Variance Reduction in SGD by Distributed Importance Sampling

نویسندگان

  • Guillaume Alain
  • Alex Lamb
  • Chinnadhurai Sankar
  • Aaron C. Courville
  • Yoshua Bengio
چکیده

Humans are able to accelerate their learning by selecting training materials that are the most informative and at the appropriate level of difficulty. We propose a framework for distributing deep learning in which one set of workers search for the most informative examples in parallel while a single worker updates the model on examples selected by importance sampling. This leads the model to update using an unbiased estimate of the gradient which also has minimum variance when the sampling proposal is proportional to the L2-norm of the gradient. We show experimentally that this method reduces gradient variance even in a context where the cost of synchronization across machines cannot be ignored, and where the factors for importance sampling are not updated instantly across the training set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Optimization with Importance Sampling

Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Gradient Descent (prox-SGD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a ra...

متن کامل

IS-ASGD: Importance Sampling Accelerated Asynchronous SGD on Multi-Core Systems

Variance reduction (VR) algorithms for convergence acceleration of stochastic gradient descent (SGD) have been developed with great efforts recently. Its two variants, stochastic variance-reduced-gradient (SVRG) and importance sampling (IS) have achieved impressive progresses. Meanwhile, asynchronous SGD (ASGD) is becoming more important due to the ever-increasing scale of optimization problems...

متن کامل

Asynchronous Accelerated Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a widely used optimization algorithm in machine learning. In order to accelerate the convergence of SGD, a few advanced techniques have been developed in recent years, including variance reduction, stochastic coordinate sampling, and Nesterov’s acceleration method. Furthermore, in order to improve the training speed and/or leverage larger-scale training data...

متن کامل

Not All Samples Are Created Equal: Deep Learning with Importance Sampling

Deep neural network training spends most of the computation on examples that are properly handled, and could be ignored. We propose to mitigate this phenomenon with a principled importance sampling scheme that focuses computation on “informative” examples, and reduces the variance of the stochastic gradients during training. Our contribution is twofold: first, we derive a tractable upper bound ...

متن کامل

Accelerating Stochastic Gradient Descent via Online Learning to Sample

Stochastic Gradient Descent (SGD) is one of the most widely used techniques for online optimization in machine learning. In this work, we accelerate SGD by adaptively learning how to sample the most useful training examples at each time step. First, we show that SGD can be used to learn the best possible sampling distribution of an importance sampling estimator. Second, we show that the samplin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1511.06481  شماره 

صفحات  -

تاریخ انتشار 2015